Novel Packaging Approaches for Increased Robustness and Overall Performance of Gimbal-less MEMS Mirrors
نویسندگان
چکیده
2D quasistatic (point-to-point) gimbal-less MEMS mirrors enable programmable, arbitrary control of laser beam position and velocity up to their maximum limits. Hence, they provide the ability to track targets, point lasercom beams, and to scan uniform velocity lines over objects in laser imaging. They are becoming increasingly established in applications including 3D scanning, laser marking and 3D printing, biomedical imaging, communications, and LiDAR. With the increased utility in applications that demand larger mirror sizes and larger overall angle*diameter (θ*D) figures of merit, the technology is continuously pushed against its limit. As a result we have implemented mirrors with larger diameters including 5.0mm, 6.4mm, and 7.5mm, and have designed actuators with larger torque and angles to match the Θ*D demand. While the results have been very positive in certain application cases, a limitation for their more wide-spread use has been the relatively high susceptibility of largeθ*D mirrors to shock and vibrations. On the other hand, one of the challenges of MEMS mirrors of small diameters is their lower optical power tolerance simply due to their smaller area and heat removal ability. Although they can be operated at up to 2-3W of CW laser power, new developments in dynamic solid state lighting in e.g. headlights demand operation at up to 10W or beyond. In this work we study and present several package-level approaches to increase mechanical damping, shock robustness, and laser power tolerance. Specifically, we study back-filling of MEMS packages with different gases as well as with different (increased) pressures to control damping and in turn increase robustness and useable bandwidth. Additionally, we study the effects of specialized mechanical structures which were designed and fabricated to modify packages to significantly reduce volumes of space around moving structures. In their standard form and packaging the MEMS mirrors tested in this study typically measure quality factors of 75-100. Increases of pressure up to 50psi have shown relatively modest reductions of the overall quality factor to the 40-50 range. Backfilling of packages with heavier inert gasses such as Ar and SF6 results in lowering of the quality factor down to 2030 range. Mechanical modifications of the package with special structures and reduced air-gap to the window yielded the best results, reducing the quality factor to ~9-14. Combination of specialized packaging structures and gas backfill and pressure control could provide a very efficient heat transfer from the mirror and the desired near-critical damping, but has not been demonstrated yet. The increased performance does not change the compactness and low power consumption the improved MEMS mirrors still consume <1mW. So far, designs with mirror sizes through 3.0mm diameter with increased damping have passed 500G shock tests. In terms of improved heat removal we have found that the packaging improvement greatly increased optical power tolerance of MEMS mirrors from few Watts of CW laser power to >10 Watts. The exact numbers for the upper limit are not yet available in samples where the heat removing structure was added and air was replaced with Helium, our setup with 3 combined lasers was not able to damage any samples.
منابع مشابه
Mirrorcle Technologies MEMS Mirrors – Technical Overview
OVERVIEW Mirrorcle Technologies Gimbal-less Two-Axis Scanning MEMS Mirror Devices are based on proprietary ARI-MEMS fabrication technology initially developed through research projects at the Adriatic Research Institute (“ARI”) in Berkeley, CA. They provide very fast optical beam steering across two axes, while requiring ultra-low power. The mirrors deflect laser beams or images to optical scan...
متن کاملThrough-Wafer Interconnects for High Degree of Freedom MEMS Deformable Mirrors
The development of an assembly and packaging process for MEMS deformable mirrors (DMs) with through wafer via (TWV) interconnects is presented. The approach consists of attaching a DM die with high-density TWV electrostatic actuator interconnects to an interposer substrate that fans out these connections for interfacing to conventional packaging technology.
متن کاملSecond Order Sliding Mode Observer-Based Control for Uncertain Nonlinear MEMS Optical Switch
This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had significant merits in reliability, control voltage requirements and power consumption. However, an inherent weakness in designing control for such systems is unavailability of switch position information at all times due to t...
متن کاملComparison of Packaging Technologies for RF MEMS Switch
Abstract—The present paper describes an integrated approach for design, fabrication and encapsulation of RF MEMS switches in view of the optimal performance subsequent to packaging. ‘Top and bottom contact’ fabrication approaches are explored using different RF MEMS switch topologies. In the ‘bottom contact package (BCP)’ the packaging cap alignment is less critical as compared to the top conta...
متن کاملChallenges in Interconnection and Packaging
Integrated circuit packaging and their testing is well advanced because of the maturity of the IC industry, their wide applications, and availability of industrial inhstructure. [ 1,2] This is not true for MEMS with respect to packaging and testing. It is more difficult to adopt standardized MEMS device packaging for wide applications although MEMS use many similar technologies to IC packaging....
متن کامل